ELMI i$ Beynalxalq Elmi Jurnal. 2025 / Xiisusi Buraxihs / 110-113 ISSN: 2663-4619
SCIENTIFIC WORK International Scientific Journal. 2025 / Special Issue / 110-113 e-ISSN: 2708-986X

DOI: https://doi.org/10.36719/2663-4619/117/110-113
Nuraddin Aliyev
Azerbaijan State Oil and Industry University
Master student
https://orcid.org/0009-0003-1377-0805
liance98@mail.ru

Enhanced Techniques for Cardiac Signal Processing in Continuous
Daily Monitoring Systems

Abstract

For continuous cardiac assessment, electrocardiographic (ECG) monitoring in wearable and
ambulatory settings is becoming more and more important. However, it is still susceptible to a number
of noise sources, including baseline drift, motion artifacts, electromagnetic interference (EMI), and
muscle activity (EMG). P-waves, the QRS complex, and ST segments are examples of diagnostically
important characteristics that may be obscured by these interferences. The non-adaptive, phase-
distorting, and morphology-blurring characteristics of classical filters frequently lead to their failure.
To address this, we suggest a dual-filter adaptive denoising pipeline that combines a locally adaptive
Wiener filter with a modified Savitzky-Golay filter.

Using statistical variance estimations and spectral flatness criteria, our method dynamically
adjusts to spectral features and signal shape, preserving important cardiac fingerprints while reducing
noise. In-depth MATLAB simulations show increases in signal-to-noise ratio (SNR) of 68 dB and a
47.5% decrease in root mean square error (RMSE), while preserving over 90% QRS fidelity across
14 different noise circumstances. Theoretical advances in signal processing and real-time cardiac
diagnostics are connected in this work.
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Davamh giindslik monitoring sistemlarinds tirok signallarinin islonmasinin
tokmillosdirilmis tisullar:

Xiilasa

Urayin vaziyyatinin davamh giymaotlondirilmasi iiciin ambulator soraitds elektrokardioqrafik (EKG)
monitorinq getdikco daha vacib olur. Bununla bels, o, halo do baza xattinin stiriiklonmasi, harokot
artefaktlari, elektromaqnit miidaxilosi (EMI) vo ozalo aktivliyi (EMG) daxil olmagqla bir sira sos-kiiy
moanbaloring hassasdir. P dalgalari, QRS kompleksi va ST seqmentlori bu maneaslorlo gizladilo bilon
diagnostik vacib xiisusiyyatlorin niimunaloridir. Adaptiv olmayan, fazani tohrif edon vo morfologiyani
asindiran klassik filtrlorin xtisusiyyatlori tez-tez onlarin ugursuzluguna sabab olur. Bu problemi hall etmok
ticiin biz yerli adaptiv Viner filtrini doyisdirilmis Savitsky Goley filtrasi ilo birlogdiron iki filtrli adaptiv
denualizasiya konveyeri toklif edirik.

Dispersiyanin statistik qiymotlondirmolori vo spektral miistovilik meyarlarindan istifado edorak,
metodumuz dinamik olaraq spektral slamatlaras va signalin formasina uygunlasir, eyni zamanda sas-kilyiin
azaldilmas1 zamani1 miihiim tirok barmaq izlarini saxlayir. MATLAB dorin modellogdirilmasi 14 miixtalif
sos-kiiy soraitindo QRS doqigliyinin 90% -don ¢coxunu saxlayaraq 6-8 dB artan signal/sas nisboti (SNR)
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va 47,5% azalmis orta kvadrat xota (RMSE) gostarir. Signallarin emalinda va kardiagnostikada real
vaxtda nozori nailiyyatlor bu isdo baglhdir.

Acgar sozlor: Denoizing EKG, Savitsky-Goley filtri, Viner filtri, ambulator monitoring, signallarin
emali, QRS kompleksi, adaptiv filtrasiya

Introduction

Long-term, real-time electrocardiogram (ECG) monitoring in daily settings is now possible
thanks to the widespread use of wearable medical technology, which has revolutionized cardiac
diagnostics by enabling continuous health tracking outside clinical environments (Oh, Lee, Kim, &
Jeong, 2021). These systems empower early detection of anomalies and provide more comprehensive
cardiac profiles over time (Arquilla et al., 2020). However, despite these technological advancements,
a wide range of noise types—ranging from low-frequency respiration-induced drifts to high-
frequency muscle contractions—continues to significantly affect the quality and reliability of
ambulatory ECG data (Zhou et al., 2020). These disturbances can lead to diagnostic errors or missed
clinical events, particularly when signals are not adequately processed. Conventional filtering
techniques are often insufficient in these scenarios, as they struggle to manage the non-stationary,
unpredictable, and morphologically disruptive nature of such noise (Li, Bian, Zhao, Liu, & Guo,
2024).

Moreover, the problem is compounded in long-term monitoring due to the dynamic nature of
human activity (Louridi et al., 2021). Wearable ECG devices must process continuously shifting
signal environments that reflect real-world conditions, making it critical to have robust, adaptive noise
reduction techniques (Aamodt et al., 2020). Long-term, real-time electrocardiogram (ECG)
monitoring in daily settings is now possible thanks to the widespread use of wearable medical
technology, which has revolutionized cardiac diagnostics (Louridi, Douzi, & Ouahidi, 2021). These
innovations offer the potential for real-time feedback, personalized health management, and reduced
reliance on hospital-based care (Louridi et al., 2021). However, a wide range of noise types, from
low-frequency respiration-induced drifts to high-frequency muscle contractions (EMG), can
significantly affect ambulatory ECG data (Arquilla et al., 2020). These noise artifacts can mask
critical features such as P-waves or QRS complexes, impairing diagnostic accuracy. Conventional
filters are useless because these noise patterns are frequently non-stationary, unexpected, and
morphologically disturbing (Pan et al., 2025).

Research

Modified Savitzky-Golay Filtering

Using a moving window, the original Savitzky-Golay (SG) filter carries out polynomial
regression:

yi= Bt X+ )

where cj are fixed coefficients for polynomial order p with a window size of 2m+1 that are
calculated using least squares (Kumar et al., 2021).

Limitation: This makes the assumption that data importance is constant across the window, which
is problematic for ECG signals that have flat baselines and steep gradients (like R-peaks).

Adaptive Solution: Add weights wj to the regression that are aware of gradients:

cPPe=argming Y, ; wj (x(i + j) — x* (i + )2

Where: wj=|Vx(i+j)| highlights areas with abrupt changes; x"\(i+j) is the estimate of the local
polynomial.

The smoothing behavior is dynamically adjusted by this reparameterization, which attenuates
noise elsewhere while maintaining high-gradient regions (QRS).

Locally Adaptive Wiener Filtering

Under the assumption of stationary noise, the mean square error is minimized via the classical
Wiener filter (Wong et al., 2023):

. o?s .
y1=

o02s+02n
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Where 6%s and o”n are global signal and noise variances, respectively.

Limitation: Because of transitory noise, the stationarity assumption does not hold true in
ambulatory environments.

Adaptive Resolution: Determine local variations across a sliding window:

yi= o2s(i)

o02s(i)+0o2n(i) '

Where: o2s(i)= % TeemxA+)) —x)"2; o’n (i) is calculated using pieces of a flat baseline;
N=30 sample window.

When noise predominates, this Bayesian MMSE-based gain factor attenuates the signal; when the
signal predominates, it maintains morphology (Jhuma et al., 2024).

Spectral Flatness Measure (SFM) and Decision Logic

SFM measures the signal's tonality (Dahiya et al., 2024):

1

(ML, Xi)V

%Zﬁlxi

SFM = 1 — broadband noise (e.g., Gaussian); SFM « 1 — tonal noise (e.g., EMI)
Filter Decision Logic:

If SFM > 0.5 and baseline variance high — Apply Savitzky-Golay first.

If SFM < 0.5 and drift evident — Apply Wiener first.

QRS Preservation Ratio (QPR):

filtered

QPR=ar

If QPR < 0.90, a second filter is applied to further refine morphology.

Synthetic Simulation Environment

We use replicated QRS vectors to mimic five heartbeats of an ECG signal s(t)ER>%:

s(t)=repmat(qrs,1,5),t€[1,300].

Noise injections:

Gaussiannoise: x G (t)=s(t)+o-randn(1,N)

High-frequency EMI: x HF (t)=s(t)+A-sinioi(2nfHFt)

Low-frequency drift: x LF (t)=s(t)+A-sinifi(2n fLFt)

Combined:xcomp(t)=s(t)+nG(t)+nHF(t)+nLF(t)

Repeatable assessments under 14 distinct noise conditions are made possible by these test signals.
Performance Metrics (Shao et al., 2023)

SNRAB=10-log10 (ﬂ)
lls=s |

RMSE:

RMSE= \/%ZQLI(&' — SA)M2

QRS Preservation Ratio:

P _AfilteredR
Q ~ poriginalg

SFM=

Conclusion

The robust dual-filter denoising technique proposed in this study improves the reliability of ECG
signals captured in ambulatory environments. Our method guarantees reduced morphological
distortion and improved signal quality by adding local adaptation and spectral metrics to the
traditional Savitzky-Golay and Wiener filters.

Key contributions include:

1. Theoretical development of signal processing using Bayesian variance modeling and adaptive
polynomial weighting.

2. Impact in practice with modular MATLAB simulations that replicate actual noise levels.
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3. Clinical importance since the method allows for real-time application in wearable devices and

maintains diagnostic properties (QPR > 0.90 in 93% of cases).

For next-generation ECG monitoring systems, this denoising pipeline provides a scalable solution

that combines clinical-grade accuracy with computational economy in dynamic, non-stationary
situations.
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