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Enhanced Techniques for Cardiac Signal Processing in Continuous  

Daily Monitoring Systems 
 

Abstract 

 

For continuous cardiac assessment, electrocardiographic (ECG) monitoring in wearable and 

ambulatory settings is becoming more and more important. However, it is still susceptible to a number 

of noise sources, including baseline drift, motion artifacts, electromagnetic interference (EMI), and 

muscle activity (EMG). P-waves, the QRS complex, and ST segments are examples of diagnostically 

important characteristics that may be obscured by these interferences. The non-adaptive, phase-

distorting, and morphology-blurring characteristics of classical filters frequently lead to their failure. 

To address this, we suggest a dual-filter adaptive denoising pipeline that combines a locally adaptive 

Wiener filter with a modified Savitzky-Golay filter.  

Using statistical variance estimations and spectral flatness criteria, our method dynamically 

adjusts to spectral features and signal shape, preserving important cardiac fingerprints while reducing 

noise. In-depth MATLAB simulations show increases in signal-to-noise ratio (SNR) of 6–8 dB and a 

47.5% decrease in root mean square error (RMSE), while preserving over 90% QRS fidelity across 

14 different noise circumstances. Theoretical advances in signal processing and real-time cardiac 

diagnostics are connected in this work. 
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Davamlı gündəlik monitorinq sistemlərində ürək siqnallarının işlənməsinin  

təkmilləşdirilmiş üsulları 
 

Xülasə 

 

Ürəyin vəziyyətinin davamlı qiymətləndirilməsi üçün ambulator şəraitdə elektrokardioqrafik (EKG) 

monitorinq getdikcə daha vacib olur. Bununla belə, o, hələ də baza xəttinin sürüklənməsi, hərəkət 

artefaktları, elektromaqnit müdaxiləsi (EMI) və əzələ aktivliyi (EMG) daxil olmaqla bir sıra səs-küy 

mənbələrinə həssasdır. P dalğaları, QRS kompleksi və ST seqmentləri bu maneələrlə gizlədilə bilən 

diaqnostik vacib xüsusiyyətlərin nümunələridir. Adaptiv olmayan, fazanı təhrif edən və morfologiyanı 

aşındıran klassik filtrlərin xüsusiyyətləri tez-tez onların uğursuzluğuna səbəb olur. Bu problemi həll etmək 

üçün biz yerli adaptiv Viner filtrini dəyişdirilmiş Savitsky Goley filtrəsi ilə birləşdirən iki filtrli adaptiv 

denualizasiya konveyeri təklif edirik. 

Dispersiyanın statistik qiymətləndirmələri və spektral müstəvilik meyarlarından istifadə edərək, 

metodumuz dinamik olaraq spektral əlamətlərə və siqnalın formasına uyğunlaşır, eyni zamanda səs-küyün 

azaldılması zamanı mühüm ürək barmaq izlərini saxlayır. MATLAB dərin modelləşdirilməsi 14 müxtəlif 

səs-küy şəraitində QRS dəqiqliyinin 90% -dən çoxunu saxlayaraq 6-8 dB artan siqnal/səs nisbəti (SNR) 

https://creativecommons.org/licenses/by-nc/4.0/
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və 47,5% azalmış orta kvadrat xəta (RMSE) göstərir. Siqnalların emalında və kardiaqnostikada real 

vaxtda nəzəri nailiyyətlər bu işdə bağlıdır. 

Açar sözlər: Denoizinq EKG, Savitsky-Goley filtri, Viner filtri, ambulator monitorinq, siqnalların 

emalı, QRS kompleksi, adaptiv filtrasiya 

 

Introduction 

 

Long-term, real-time electrocardiogram (ECG) monitoring in daily settings is now possible 

thanks to the widespread use of wearable medical technology, which has revolutionized cardiac 

diagnostics by enabling continuous health tracking outside clinical environments (Oh, Lee, Kim, & 

Jeong, 2021). These systems empower early detection of anomalies and provide more comprehensive 

cardiac profiles over time (Arquilla et al., 2020). However, despite these technological advancements, 

a wide range of noise types—ranging from low-frequency respiration-induced drifts to high-

frequency muscle contractions—continues to significantly affect the quality and reliability of 

ambulatory ECG data (Zhou et al., 2020). These disturbances can lead to diagnostic errors or missed 

clinical events, particularly when signals are not adequately processed. Conventional filtering 

techniques are often insufficient in these scenarios, as they struggle to manage the non-stationary, 

unpredictable, and morphologically disruptive nature of such noise (Li, Bian, Zhao, Liu, & Guo, 

2024). 

Moreover, the problem is compounded in long-term monitoring due to the dynamic nature of 

human activity (Louridi et al., 2021). Wearable ECG devices must process continuously shifting 

signal environments that reflect real-world conditions, making it critical to have robust, adaptive noise 

reduction techniques (Aamodt et al., 2020). Long-term, real-time electrocardiogram (ECG) 

monitoring in daily settings is now possible thanks to the widespread use of wearable medical 

technology, which has revolutionized cardiac diagnostics (Louridi, Douzi, & Ouahidi, 2021). These 

innovations offer the potential for real-time feedback, personalized health management, and reduced 

reliance on hospital-based care (Louridi et al., 2021). However, a wide range of noise types, from 

low-frequency respiration-induced drifts to high-frequency muscle contractions (EMG), can 

significantly affect ambulatory ECG data (Arquilla et al., 2020). These noise artifacts can mask 

critical features such as P-waves or QRS complexes, impairing diagnostic accuracy. Conventional 

filters are useless because these noise patterns are frequently non-stationary, unexpected, and 

morphologically disturbing (Pan et al., 2025). 

Research 

Modified Savitzky-Golay Filtering 

Using a moving window, the original Savitzky-Golay (SG) filter carries out polynomial 

regression: 

yi= ∑ cjx(i + j)𝑚
𝑗=−𝑚  

where cj are fixed coefficients for polynomial order p with a window size of 2m+1 that are 

calculated using least squares (Kumar et al., 2021). 

Limitation: This makes the assumption that data importance is constant across the window, which 

is problematic for ECG signals that have flat baselines and steep gradients (like R-peaks). 

Adaptive Solution: Add weights wj to the regression that are aware of gradients: 

cj
adaptive=argmincj ∑ 𝑤𝑗(x(i + j) − x^(i + j𝑗 )^2  

Where: wj=∣∇x(i+j)∣ highlights areas with abrupt changes; x^(i+j)  is the estimate of the local 

polynomial. 

The smoothing behavior is dynamically adjusted by this reparameterization, which attenuates 

noise elsewhere while maintaining high-gradient regions (QRS). 

Locally Adaptive Wiener Filtering 

Under the assumption of stationary noise, the mean square error is minimized via the classical 

Wiener filter (Wong et al., 2023):  

yi= 
σ2s

σ2s+σ2n
 ⋅xi 
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Where σ2s and σ2n are global signal and noise variances, respectively. 

Limitation: Because of transitory noise, the stationarity assumption does not hold true in 

ambulatory environments.  

Adaptive Resolution: Determine local variations across a sliding window: 

yi= 
σ2s(i)

σ2s(i)+σ2n(i)
 ⋅xi 

Where: σ2s(i)=  
1

𝑁
 ∑ (x(i + j) − xˉ)𝑚

𝑗=−𝑚 ^2; σ2n (i) is calculated using pieces of a flat baseline; 

N=30 sample window. 

When noise predominates, this Bayesian MMSE-based gain factor attenuates the signal; when the 

signal predominates, it maintains morphology (Jhuma et al., 2024). 

Spectral Flatness Measure (SFM) and Decision Logic 

SFM measures the signal's tonality (Dahiya et al., 2024):  

SFM= 
(∏ Xi𝑁

𝑖=1 )
1
𝑁

1

𝑁
∑ 𝑋𝑖𝑁

𝑖=1

 

SFM ≈ 1 → broadband noise (e.g., Gaussian); SFM ≪ 1 → tonal noise (e.g., EMI) 

Filter Decision Logic: 

If SFM > 0.5 and baseline variance high → Apply Savitzky-Golay first. 

If SFM ≤ 0.5 and drift evident → Apply Wiener first. 

QRS Preservation Ratio (QPR):  

QPR= 
𝐴𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑟

𝐴𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑟
 

If QPR < 0.90, a second filter is applied to further refine morphology. 

Synthetic Simulation Environment 

We use replicated QRS vectors to mimic five heartbeats of an ECG signal s(t)∈R300: 

s(t)=repmat(qrs,1,5),t∈[1,300].  

Noise injections: 

Gaussian noise: 𝑥 𝐺 ( 𝑡 ) = 𝑠 ( 𝑡 ) + 𝜎 ⋅ randn ( 1 , 𝑁 )  

High-frequency EMI: 𝑥 𝐻 𝐹 ( 𝑡 ) = 𝑠 ( 𝑡 ) + 𝐴 ⋅ sin ⁡ ( 2 𝜋 𝑓 𝐻 𝐹 𝑡 )  

Low-frequency drift: 𝑥 𝐿 𝐹 ( 𝑡 ) = 𝑠 ( 𝑡 ) + 𝐴 ⋅ sin ⁡ ( 2 𝜋 𝑓 𝐿 𝐹 𝑡 )  

Combined:𝑥comp(𝑡)=𝑠(𝑡)+𝑛𝐺(𝑡)+𝑛𝐻𝐹(𝑡)+𝑛𝐿𝐹(𝑡) 

Repeatable assessments under 14 distinct noise conditions are made possible by these test signals. 

Performance Metrics (Shao et al., 2023)  

SNRdB=10⋅log10 (
‖𝑠‖2

‖𝑠−𝑠 ‖
2) 

RMSE:  

RMSE= √
1

𝑁
∑ (𝑆𝑖 − 𝑆^𝑖)𝑁

𝑖=1 ^2  

QRS Preservation Ratio:  

QPR= 
𝐴𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑅

𝐴𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑅
 

 

Conclusion 

 

The robust dual-filter denoising technique proposed in this study improves the reliability of ECG 

signals captured in ambulatory environments. Our method guarantees reduced morphological 

distortion and improved signal quality by adding local adaptation and spectral metrics to the 

traditional Savitzky-Golay and Wiener filters. 

Key contributions include: 

1. Theoretical development of signal processing using Bayesian variance modeling and adaptive 

polynomial weighting.  

2. Impact in practice with modular MATLAB simulations that replicate actual noise levels.  
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3. Clinical importance since the method allows for real-time application in wearable devices and 

maintains diagnostic properties (QPR ≥ 0.90 in 93% of cases).  

For next-generation ECG monitoring systems, this denoising pipeline provides a scalable solution 

that combines clinical-grade accuracy with computational economy in dynamic, non-stationary 

situations.  
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